2020

MATHEMATICS - HONOURS

Fifth Paper

(Module - IX)
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
($\mathbb{Q}, \mathbb{R}, \mathbb{N}$ denote the sets of rational numbers, real numbers and natural numbers respectively)
Answer question no. 1 and any two questions from the rest.

1. (a) Answer any one of the following :
(i) Prove or disprove total variation of $\sin x+\cos x$ on $\left[0, \frac{\pi}{4}\right]$ is $\sqrt{2}$.
(ii) Correct or justify : A Riemann-integrable function f on $[a, b]$ may be neither continuous nor monotone on $[a, b]$.
(iii) Find the limit function of the sequence $\left\{f_{n}\right\}$ given by $f_{n}(x)=\frac{[n x]}{n}, 0 \leq x \leq 1 ; n \in \mathbb{N}$.
([y] denote the largest integer less than or equal to y).
(iv) Prove or disprove : The power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=1}^{\infty} n . a_{n} x^{n-1}$ have same radius of convergence.
(b) Prove or disprove any one of the following :
(i) The set $A=\{5+x \sqrt{2}: x \in \mathbb{Q}\}$ is of measure zero.
(ii) Every bounded enumerable set is compact.
(iii) The function $f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}}$ is continuous on \mathbb{R}.
(iv) Radius of convergence of $1+\frac{x}{2}+\left(\frac{x}{4}\right)^{2}+\left(\frac{x}{2}\right)^{3}+\left(\frac{x}{4}\right)^{4}+\ldots .$. is 2 .
2. (a) If S is a bounded, closed subset of \mathbb{R}, prove that every infinite open cover of S has a finite subcover.
(b) Choosing a suitable open cover, prove that $A=(0,1) \cup\{5,6\}$ is not compact.
(c) If a function f is Riemann-integrable on $[a, b]$, prove that the set $S=\left\{x \in[a, b] / \int_{x}^{b} f(t) d t\right.$ is continuous $\}$ is compact.
3. (a) Construct a real valued function on a compact interval which is uniformly continuous but not of bounded variation on that interval.
(b) If $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$, prove that its variation function is monotonically increasing on $[a, b]$.
(c) Let $f, g:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{clc}x^{2} \cos \frac{\pi}{x^{2}} & \text { if } & x \in(0,1] \\ 0 & \text { if } & x=0\end{array}\right.$ and $g(x)=e^{x^{2}+1}, x \in[0,1]$.
Examine whether $\gamma=(f, g)$ is rectifiable.

$$
6+6+8
$$

4. (a) Prove that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann Integrable on $[a, b]$ if and only if for every $\varepsilon(>0)$ there is a partition P of $[a, b]$ such that $U(P, f)-L(P, f)<\varepsilon$.
(b) If f, g are Riemann integrable on $[a, b]$ and $|g(x)|>1$ for all $x \in[a, b]$, use Lebesgue's criterion to show that $\frac{f}{g}$ is Riemann integrable on $[a, b]$.
(c) If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $\int_{a}^{b} f^{2}(x) d x=0$ then prove that the set $\{x \in[a, b] / f(x)=0\}$ is uncountable.
$8+6+6$
5. (a) If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$, prove that $\int_{a}^{b} f(x) d x=\mu(b-a)$,
where $\inf _{x \in[a, b]} f(x) \leq \mu \leq \sup _{x \in[a, b]} f(x)$.
(b) Correct or justify : If a real valued function f has a primitive on $[a, b]$, then f is Riemann integrable on $[a, b]$.
(c) Prove that $\frac{\pi}{6}>\int_{0}^{1 / 2} \frac{d x}{\sqrt{1-x^{2020}}}>\frac{1}{2}$.
6. (a) Let $\left\{f_{n}\right\}$ be a sequence of functions defined on $[a, b]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \forall x \in[a, b]$ and $M_{n}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$.
Show that $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$ if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(b) Let $f_{n}(x)=\left\{\begin{array}{ll}\frac{x}{n^{2}} & \text { if } n \text { is even } \\ \frac{1}{n^{2}} & \text { if } n \text { is odd }\end{array}\right.$ where $x \in \mathbb{R}$.

Find the limit function of $\left\{f_{n}\right\}$ with proper justification. Is the convergence uniform? Justify.
(c) Let f be a real valued uniformly continuous function on \mathbb{R}. If $f_{n}(x)=f\left(x+\frac{1}{n}\right)$ for all $x \in \mathbb{R}$, for all $n \in \mathbb{N}$, then prove that $\left\{f_{n}\right\}$ is uniformly convergent on \mathbb{R}. $8+(4+2)+6$
7. (a) Prove that the sum function of a uniformly convergent series $\sum_{n} f_{n}$ of continuous functions defined on a set $D \subseteq \mathbb{R}$ is continuous on D.
(b) Examine whether $\sum_{n=1}^{\infty}\left[n^{2} x e^{-n^{2} x^{2}}-(n-1)^{2} x e^{-(n-1)^{2} x^{2}}\right]$ is uniformly convergent on $[0,1]$.
(c) Using Abel's test prove that the series $\sum_{n=1}^{\infty} a_{n} n^{-x}$ converges uniformly on [0,1] if $\sum_{n=1}^{\infty} a_{n}$ converges uniformly on $[0,1]$.
8. (a) If a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $\rho \in(0, \infty)$ and $\sum_{n=0}^{\infty} a_{n} \rho^{n}$ is convergent, prove that the power series is uniformly convergent on $[0, \rho]$.
(b) Find the largest interval in which the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n .10^{n-1}}$ is convergent.
(c) Prove or disprove : If a power series is neither nowhere convergent nor everywhere convergent, then its sum function is bounded.

