P(III)-Mathematics-H-5-(Mod.-IX)

2020

MATHEMATICS — HONOURS

Fifth Paper

(Module - IX)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

 $(\mathbb{Q}, \mathbb{R}, \mathbb{N})$ denote the sets of rational numbers, real numbers and natural numbers respectively)

Answer question no. 1 and any two questions from the rest.

1. (a) Answer *any one* of the following :

- (i) Prove or disprove total variation of $\sin x + \cos x$ on $\left[0, \frac{\pi}{4}\right]$ is $\sqrt{2}$.
- (ii) Correct or justify : A Riemann-integrable function f on [a, b] may be neither continuous nor monotone on [a, b].

(iii) Find the limit function of the sequence $\{f_n\}$ given by $f_n(x) = \frac{[nx]}{n}, 0 \le x \le 1; n \in \mathbb{N}$.

([y] denote the largest integer less than or equal to y).

(iv) Prove or disprove : The power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=1}^{\infty} n \cdot a_n x^{n-1}$ have same radius of

convergence.

- (b) Prove or disprove *any one* of the following :
 - (i) The set $A = \{5 + x\sqrt{2} : x \in \mathbb{Q}\}$ is of measure zero.
 - (ii) Every bounded enumerable set is compact.

(iii) The function
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(n^2 x)}{n^2}$$
 is continuous on \mathbb{R} .

(iv) Radius of convergence of $1 + \frac{x}{2} + \left(\frac{x}{4}\right)^2 + \left(\frac{x}{2}\right)^3 + \left(\frac{x}{4}\right)^4 + \dots$ is 2.

Please Turn Over

6

4

P(III)-Mathematics-H-5-(Mod.-IX)

2. (a) If S is a bounded, closed subset of \mathbb{R} , prove that every infinite open cover of S has a finite subcover.

(2)

- (b) Choosing a suitable open cover, prove that $A = (0, 1) \cup \{5, 6\}$ is not compact.
- (c) If a function f is Riemann-integrable on [a, b], prove that the set

$$S = \left\{ x \in [a, b] \middle/ \int_{x}^{b} f(t) dt \text{ is continuous} \right\} \text{ is compact.}$$
 10+6+4

- **3.** (a) Construct a real valued function on a compact interval which is uniformly continuous but not of bounded variation on that interval.
 - (b) If f:[a, b]→ℝ is of bounded variation on [a, b], prove that its variation function is monotonically increasing on [a, b].

(c) Let
$$f, g:[0,1] \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} x^2 \cos \frac{\pi}{x^2} & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0 \end{cases}$

and $g(x) = e^{x^2+1}$, $x \in [0, 1]$. Examine whether $\gamma = (f, g)$ is rectifiable.

6+6+8

- (a) Prove that a bounded function f:[a, b]→ R is Riemann Integrable on [a, b] if and only if for every ε (> 0) there is a partition P of [a, b] such that U(P, f) L(P, f) < ε.
 - (b) If f, g are Riemann integrable on [a, b] and |g(x)| > 1 for all x ∈ [a, b], use Lebesgue's criterion to show that f/g is Riemann integrable on [a, b].
 - (c) If $f:[a,b] \to \mathbb{R}$ is a continuous function such that $\int_{a}^{b} f^{2}(x)dx = 0$ then prove that the set $\{x \in [a,b]/f(x)=0\}$ is uncountable. 8+6+6
- 5. (a) If $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a, b], prove that $\int_{a}^{b} f(x) dx = \mu(b-a)$, where $\inf_{x \in [a,b]} f(x) \le \mu \le \sup_{x \in [a,b]} f(x)$.
 - (b) Correct or justify : If a real valued function f has a primitive on [a, b], then f is Riemann integrable on [a, b].

(c) Prove that
$$\frac{\pi}{6} > \int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1 - x^{2020}}} > \frac{1}{2}$$
. 6+6+8

(P(III)-Mathematics-H-5-(Mod.-IX)

6. (a) Let $\{f_n\}$ be a sequence of functions defined on [a, b] such that $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in [a, b]$ and

$$M_n = \sup_{x \in [a, b]} \left| f_n(x) - f(x) \right|.$$

Show that $\{f_n\}$ converges uniformly to f on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.

(b) Let
$$f_n(x) = \begin{cases} \frac{x}{n^2} & \text{if } n \text{ is even} \\ \frac{1}{n^2} & \text{if } n \text{ is odd} \end{cases}$$
 where $x \in \mathbb{R}$.

Find the limit function of $\{f_n\}$ with proper justification. Is the convergence uniform? Justify.

- (c) Let f be a real valued uniformly continuous function on \mathbb{R} . If $f_n(x) = f\left(x + \frac{1}{n}\right)$ for all $x \in \mathbb{R}$, for all $n \in \mathbb{N}$, then prove that $\{f_n\}$ is uniformly convergent on \mathbb{R} . 8+(4+2)+6
- 7. (a) Prove that the sum function of a uniformly convergent series $\sum_{n} f_{n}$ of continuous functions defined on a set $D \subseteq \mathbb{R}$ is continuous on D.

(b) Examine whether
$$\sum_{n=1}^{\infty} \left[n^2 x e^{-n^2 x^2} - (n-1)^2 x e^{-(n-1)^2 x^2} \right]$$
 is uniformly convergent on [0, 1].

(c) Using Abel's test prove that the series $\sum_{n=1}^{\infty} a_n n^{-x}$ converges uniformly on [0, 1] if $\sum_{n=1}^{\infty} a_n$ converges uniformly on [0, 1].

8. (a) If a power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence $\rho \in (0, \infty)$ and $\sum_{n=0}^{\infty} a_n \rho^n$ is convergent,

prove that the power series is uniformly convergent on $[0, \rho]$.

- (b) Find the largest interval in which the power series $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 10^{n-1}}$ is convergent.
- (c) Prove or disprove : If a power series is neither nowhere convergent nor everywhere convergent, then its sum function is bounded. 8+8+4